Do the constraints of human speciation cause expression of the same set of genes in brain, testis, and placenta?
نویسندگان
چکیده
Evolution appears to be especially rapid during speciation, and the genes involved in speciation should be evident in species such as humans that have recently speciated or are presently in the process of speciation. Haldane's rule is that when one sex is sterile or inviable in interspecific F(1) hybrids, it is usually the heterogametic sex. For mammals, this implicates genes on the X chromosome as those particularly responsible for speciation. A preponderance of sex- and reproduction-related genes on the X chromosome has been shown repeatedly, but also mental retardation genes are more frequent on the X chromosome. We argue that brain, testis, and placenta are those organs most responsible for human speciation. Furthermore, the high degree of complexity of the vertebrate genome demands coordinate evolution of new characters. This coordination is best attained when the same set of genes is redeployed for these new characters in the brain, testis, and placenta.
منابع مشابه
The impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملMobile Phone Radiation exposure effects on Bax and Bcl-2 Genes Expression in hippocampal formation of mice brain
Introduction: The increasing use of electromagnetic field generators in our daily life in one hand and on contradictory reports on the effects of their waves on public health on the other hand encourages scientists to do more and more research work in this field. One of the most important topics is the study of gene defect due to microwave radiation. Materials and Met...
متن کاملP-230: Analysis of TEX15 Expression in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men Referred to Royan Institute
Background: TEX15 is a novel protein that is required for chromosomal synapsis and meiotic recombination. Human TEX15 is located on chromosome 8(8p12 region) and expressed in testis and ovary, as is its mouse ortholog. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15 deficient spermatocytes exhibit a failure in chromosomal synapsis. In ...
متن کاملP-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility
Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...
متن کاملP-195: Analysis of Expression Level of Tex11 Gene in Obstructive and Non-Obstructive Azoospermic Men Referred to Royan Institute
Background: About 15% of couples worldwide suffer from infertility problem that half of these cases are related to male infertility. Spermatogenesis is a cumulative process and thousands of genes are involved in it. Change in one of these genes or their products can cause male infertility. Tex11 is a germ cell specific gene that is located on the X chromosome (Xq13.1 region). This gene was iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cytogenetics and cell genetics
دوره 91 1-4 شماره
صفحات -
تاریخ انتشار 2000